احاطه ای پویا در گراف ها
thesis
- دانشگاه تربیت معلم - تبریز - دانشکده علوم
- author جواد سخایی
- adviser سید محمود شیخ الاسلامی
- publication year 1387
abstract
مجموعه s را یک مجموعه احاطه گر پویا گوییم هر گاه به ازای هر عضو s حداقل یک از دو شرط زیر برقرار باشد. 1) {s - {v یک مجموعه احاطه گر باشد. 2) راسی مانند u در همسایگی v در خارج از s وجود داشته باشد که اگر v را با u در s جابجا کنیم آنگاه s یک احاطه گر باشد. یک مجموعه احاطه گر پویای g را می نیمال گویند هر گاه هیچ زیر مجموعه واقعی آن احاطه گر پویا نباشد. منییم تعداد یالهایی که با زیر تقسیم آنها عدد احاطه ای پویا افزایش می یابد را عدد زیر تقسیم احاطه ای پویا گوییم. مجموعه s را یک مجموعه k - احاطه گر پویا گوییم اگر برای هر k - زیر مجموعه ی w از v(g) یک تابع از s موجود باشد بطوریکه( f(s زیر مجموعه w را احاطه کند. در این پایان نامه دو پارامتر جدید احاطه ای در گراف ها را مورد بررسی قرار داده و دو پارامتر جدیددیگر را معرفی کردهایم.بررسی علمی مجموعه های احاطه گر و عدد احاطه ای در گراف ها به سال 1960 بر می گردد. چاپ بیش از دو هزار مقاله علمی نشان از اهمیت این مفهوم در نظریه گراف و کاربرد های آن دارد.
similar resources
بازی احاطه ای در گراف ها
بازی احاطه ای بر روی گراف های ساده ی بدون جهت توسط دو بازیکن $mathcal d$ و $mathcal a$ انجام می شود. هر یک از این بازیکنان در نوبت بازی خود یک یال بدون جهت را انتخاب و آن را جهت گذاری می کنند. بازی را بازیکن $mathcal d$ شروع می کند و در جهت گذاری یال ها به دنبال کاهش عدد احاطه ای گراف جهت داری است که در انتهای بازی به دست خواهد آمد، در حالی که بازیکن $mathcal a$ به دنبال افزایش این عد...
احاطه ای کسری در گراف ها
در این پایان نامه به بررسی خانواده ای از پارامترها که مدل کسری برخی پارامترهای دیگر در نظریه گراف هستند، می پردازیم. پارامترهای اصلی در حالت کلی به فرم: مینیمم-ماکسیمم کاردینالیتی یک مجموعه مینیمال-ماکسیمال از رئوس گراف هستند، بطوریکه مجموع وزن رئوسی که به همسایگی هر رأس نسبت می د هیم حداکثر-حداقل یک می باشد. پارامترهایی که در این پایان نامه بررسی می کنیم شامل مدل کسری احاطه ای، احاطه ای تام،...
15 صفحه اولعدد احاطه ای مستقل در گراف ها
فرض کنید (g=(v,e گرافی با مجموعه رئوس v و مجموعه یال های e باشد. مجموعه d از رئوس گراف g، یک مجموعه احاطه گر است، هرگاه هر عضو v-d با رأسی از d، مجاور باشد. می نیمم اندازه یک مجموعه احاطه گر را عدد احاطه ای g گویند و با نماد (γ(g نشان می دهند. مجموعه d از رئوس گراف g، یک مجموعه مستقل است، هرگاه هیچ دو رأسی از d، در g مجاور نباشد. ماکسیمم اندازه یک مجموعه مستقل را عدد استقلال g گویند و با نماد ...
15 صفحه اولنتایجی برای عدد احاطه گر ماکسیمال ۲-رنگین کمانی در گراف ها
تابع یک تابع احاطه گر 2-رنگین کمانی برای گراف نامیده میشود هرگاه برای هر راس با شرط داشته باشیم . وزن یک 2rdf برابر است با . عدد احاطه گر 2-رنگین کمانی گراف را که با نماد نمایش میدهیم کمترین وزن یک 2rdf در گراف است. تابع احاطهگر ماکسیمال 2-رنگین کمانی (m2rdf) برای گراف یک تابع احاطهگر 2-رنگین کمانی میباشد بهطوری که مجموعهی یک مجموعهی احاطهگر برای گراف نباشد. وزن یک m2rdf ...
full text?-احاطه گری در گراف ها
فرض کنید g گراقی از مرتبه n و فاقد رأس تنها باشد. زیر مجموعه s از رئوس گراف g را یک مجموعه ?-احاطه گر نامیم هرگاه برای هر رأس خارج از مجموعه s، داشته باشیم |n(v) ? s|?? |n(v)|.حال اگراین مسأله را برای تمام رئوس گرافل تعمیم دهیم مسأله جدیدی به نام ?-احاطه گری کلی بوجود می آید.همچنین در فصل های بعد این پایان نامه تأثیر حذف یک رأس و افزایش و کاهش یک یال را بر عدد ?-احاطه گری بررسی می نماییم و مفهو...
15 صفحه اولMy Resources
document type: thesis
دانشگاه تربیت معلم - تبریز - دانشکده علوم
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023